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ABSTRACT

The impact of assimilating Global Precipitation Measurement (GPM)Microwave Imager (GMI) clear-sky

radiance on the track and intensity forecasts of two Atlantic hurricanes during the 2015 and 2016 hurricane

seasons is assessed using the HurricaneWeather Research and Forecasting (HWRF) Model. The GMI clear-

sky brightness temperature is assimilated using a Gridpoint Statistical Interpolation (GSI)-based hybrid

ensemble–variational data assimilation system, which utilizes the Community Radiative Transfer Model

(CRTM) as a forward operator for satellite sensors. A two-step bias correction approach, which combines a

linear regression procedure and variational bias correction, is used to remove most of the systematic biases

prior to data assimilation. Forecast results show that assimilatingGMI clear-sky radiance has positive impacts

on both track and intensity forecasts, with the extent depending on the phase of hurricane evolution. Forecast

verifications against dropsonde soundings and reanalysis data show that assimilating GMI clear-sky radiance,

when it does not overlap with overpasses of other microwave sounders, can improve forecasts of both ther-

modynamic (e.g., temperature and specific humidity) and dynamic variables (geopotential height and wind

field), which in turn lead to better track forecasts and a more realistic hurricane inner-core structure. Even

when othermicrowave sounders are present (e.g., AMSU-A,ATMS,MHS, etc.), the assimilation ofGMI still

reduces temperature forecast errors in the near-hurricane environment, which has a significant impact on the

intensity forecast.

1. Introduction

Since the 1990s, satellite observations have become

a major source of observations for numerical weather

prediction (NWP), owing to the rapid development of

radiative transfer models, data assimilation technologies,

and launches of numerous major satellites. Specifically,

data assimilation allows the incorporation of observa-

tional information into the NWP system if the transfor-

mation of analysis variables into the form of observations

is achievable. For satellite radiance observations, this can

be accomplished by using fast radiative transfer models,

which simulate the satellite-observed radiances for a

given atmospheric state, satellite scan geometry, and

surface properties. The atmospheric state is then adjusted
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according to differences between simulated and observed

radiances such that the final analysis is at the maximum

likelihood (e.g., Derber andWu1998).Many studies have

demonstrated the added benefits to NWP of directly as-

similating satellite radiance observations in both global

models (Derber and Wu 1998; McNally et al. 2000;

Okamoto and Derber 2006; Bauer et al. 2006; Miyoshi

and Sato 2007; Sakamoto and Christy 2009; Goerss 2009;

Aravéquia et al. 2011; Hoppel et al. 2013) and regional

models (e.g., Zou et al. 2011; Liu et al. 2012; Qin et al.

2013; M. Zhang et al. 2013; S. Q. Zhang et al. 2013;

Kazumori 2014; Wang et al. 2015; Lin et al. 2017).

So far, the assimilation of radiance observations is

known to be able to significantly reduce error in NWP,

specifically over regions where conventional observations

are sparse. For instance, hurricane forecasts, in particular,

benefit greatly from the large spatial coverage over oceans

and the high temporal resolution of satellite observations.

This is because hurricanes form and evolve mostly over

the oceans, where conventional observations such as ra-

diosonde and surface observations are less available. Since

the last decade, the research community has devoted great

effort to assimilating satellite observations to improve

hurricane track and intensity predictions (Pu et al. 2002,

2008; Pu and Zhang 2010; Liu et al. 2012; Xu et al. 2013;

Zou et al. 2013; Zhang and Pu 2014; Yang et al. 2016; Xu

et al. 2016; Wu et al. 2016). Specifically, these previous

studies found that satellite microwave sounders is partic-

ularly useful for understanding moist processes associated

with hurricanes owing to its unique capability to depict

precipitation structure and moisture processes.

The Global Precipitation Measurement (GPM) is a re-

cent constellation-based satellite mission with microwave

imagery that was initiated by the National Aeronautics

and Space Administration (NASA) and the Japan Aero-

space Exploration Agency (JAXA). Building upon the

success of its predecessor, the Tropical RainfallMeasuring

Mission (TRMM), GPM aims to unify and advance next-

generation precipitation measurement from a constella-

tion of both research and operational satellites (Hou et al.

2014). Launched on 28 February 2014, the GPM Core

Observatory is equipped with the first spaceborne dual-

frequency precipitation radar, and a conical-scanning

multichannel microwave imager. Specifically, the GPM

Microwave Imager (GMI) not only inherits the nine

channels of the TRMM Microwave Imager (TMI) to de-

tect heavy to light precipitation, but also includes four

additional high-frequency channels (166 and 183GHz) to

improve sensitivity to and detection of snowfall. In addi-

tion, GMI at least doubles the spatial resolution of the

channels in TMI and has one of the highest resolutions

among the group of GPM constellation satellites. Fur-

thermore, the outstanding calibration of GMI also serves

as a reference for the intercalibration of other microwave

sounders in the GPM constellation to ensure a physically

consistent brightness temperature.

Because of the numerous improvements that GPM

brings compared toTRMM, it is expected that assimilating

GMI radiance will have a positive impact on hurricane

track and intensity forecasts. In this study, we investigate

the impact of assimilating GMI clear-sky radiance on

hurricane track and intensity forecasts using the National

Centers for Environmental Prediction (NCEP) Hurricane

Weather Research and Forecasting (HWRF) Model and

the Gridpoint Statistical Interpolation analysis system

(GSI)-based hybrid of ensemble and three-dimensional

variational (3DVar) data assimilation systems. Two nota-

ble Atlantic hurricane cases, Hurricanes Joaquin (2015)

andMatthew (2016), are used for case studies in this paper.

The paper is organized as follows: section 2 gives a

brief introduction to the GMI observations, HWRF

Model, GSI data assimilation system, hurricane cases,

and experimental setting designs. Section 3 provides

details about quality control (QC) and bias correction

(BC). Assimilation and forecast results and validation of

the data impact are discussed in section 4. Section 5

summarizes results and provides the conclusions.

2. GMI observations, HWRF Model, data
assimilation system, and experimental
configurations

a. GMI observations

GMI is a conical scanning passivemicrowave radiometer

with 13 microwave channels, ranging from 10 to 183GHz.

Channels 1–9 of GMI have frequencies (10–89GHz) sim-

ilar to those of its predecessor, the TRMM Microwave

Imager (TMI). Responsible for sensing liquid precipitation

and the lower-tropospheremoisture profile, these channels

obtain moisture and temperature information in the lower

troposphere (.800hPa). In addition, GMI includes four

high-frequency channels (channels 10–13) that are re-

sponsible for detection of light precipitation and snowfall.

Using a conical scan design, the GMI main reflector has a

rotation rate of 32 rpm, scanning a 1408 sector centered on

the spacecraft ground track with an altitude of about

407km. This scan configuration gives a cross-track swath

covering roughly 885km above the earth’s surface. In

terms of scan geometry, GMI uses two sets of scan angles

for the 13 channels. The first 9 channels scan at an off-nadir

angle of 48.58, while the remaining 4 channels scan at 45.468
(see details in Hou et al. 2014). In this study, the GMI

Level 1C-R common calibrated and coregistered high-

frequency and low-frequency brightness temperature data

in all 13 microwave channels are assimilated.
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b. HWRF Model, data assimilation system, and the
forward model

The HWRF system was developed at NCEP to pro-

vide numerical guidance for the forecasting of tropical

cyclone tracks, intensity, and structure (Gopalakrishnan

et al. 2011). It uses the NonhydrostaticMesoscaleModel

(NMM) core of the Weather Research and Forecasting

(WRF) system as its dynamic solver. Since 2011, HWRF

has adopted a triply nested domain configuration. Spe-

cifically, HWRF, version 3.7 [see details in Tallapragada

et al. (2015)], is used in this study, in which the parent

domain is configured with 18-km horizontal resolution,

covering roughly 808 3 808 on a rotated latitude–

longitude E-staggered grid. The intermediate and in-

ner nest domains are two-way interactive nesting and

move along with the storm, with resolutions of about

6 vand 2km, covering about 128 3 128 and 7.18 3 7.18,
respectively (see Fig. 1). The configuration of the

HWRF Model is set as close as possible to the opera-

tional HWRF Model in the hurricane season of 2015.

The current data assimilation system for HWRF is the

NCEP GSI-based hybrid ensemble–3DVar system. The

cost function used in the data assimilation system is

defined as follows:

J(x)5
1

2
(x2 xb)T(b

1
B

1
1b

2
B

2
)21(x2 xb)

1
1

2
[y

0
2H(x)]TR21[y

0
2H(x)] , (1)

where the first term is the background error term with a

hybrid background error covariance, which is a sumof two

parts: a prescribed static matrix B1 and a flow-dependent

part of the background covariance matrix B2 estimated

using the 6-h forecast of the 80-member ensembleKalman

filter (EnKF) for the NCEP Global Forecast System

(GFS). The weighting factors for (b1 andb2) are set to be

0.2 and 0.8, respectively. The second term is an observa-

tional error term. The operator H is the forward model,

which includes the Community Radiative TransferModel

(CRTM) as its radiative transfer component for satellite

radiance assimilation. CRTM is a fast-radiative transfer

model developed by the Joint Center for Satellite Data

Assimilation (JCSDA) at NOAA. A comprehensive de-

scription of CRTM can be found in Han et al. (2006) and

Weng (2007). CRTM is able to simulate radiances of a

large number of sensors on board, including GMI. For

clear-sky simulation over the ocean, basic inputs include

atmospheric vertical profiles (e.g., temperature, specific

humidity), surface parameters (e.g., surface temperature,

wind speed, and direction) and sensor geometry (e.g.,

sensor zenith angle, sensor height). In addition to radi-

ance computation, CRTM also includes calculation of the

Jacobian and adjoint model for facilitating various data

assimilation–related applications.

c. Experimental configurations

In this study, two notable recent hurricanes cases,

Hurricane Joaquin (2015) andHurricaneMatthew (2016),

are selected in order to examine the impact of assimilation

of GMI clear-sky radiance on hurricane track and in-

tensity forecasts.

Before data assimilation, the HWRF Model employs

a vortex initialization procedure (Liu et al. 2006) to

correct the storm position and intensity approach to the

real-time estimation (see details in Tallapragada et al.

2015). This procedure consists of two components:

a vortex relocation, which places the hurricane vortex at

the location from theNational Hurricane Center (NHC)

tropical cyclone vital statistics (TCVitals) database, and

an intensity and size correction, which adjusts the in-

tensity and vortex structure using the TCVitals data-

base. However, previous studies have shown that vortex

initialization and data assimilation counteract each

other in some cases (Tallapragada et al. 2015). In addi-

tion, vortex initialization can also induce imbalances in

the initial conditions and lead to vortex spindown

problems in HWRF forecasts in some cases (Pu et al.

2016; Zhang et al. 2018). In these situations, impacts

from data assimilation can be hard to interpret clearly.

FIG. 1. GFS analysis of sea level pressure (color contours, units

hPa) and storm center from NHC best track (black storm sign) at

0000 UTC 2 Oct 2015 for Hurricane Joaquin. HWRF Model

forecast domains, as indicated by d01, d02, and d03 and HWRF

data assimilation domains, as indicated by ghost d02 (black shaded

area), and ghost d03 (pink shaded area) are also indicated.
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To clearly demonstrate the impact of GMI data assim-

ilation, the intensity correction component is turned off

in all data assimilation experiments presented in this

study. However, the vortex relocation is still used for

data assimilation experiments to avoid potential phase

errors that may put observations in wrong locations and

result in harm to the vortex inner core.

In addition, the current operational HWRF uses the

NCEP GFS analysis to initialize the outer domain

(d01) and also uses the GFS forecast to provide the

boundary conditions for d01. Since observations over

the parent domain are already assimilated in the

global data assimilation, the operational HWRF data

assimilation is performed only at the inner 6- and

2-km nests (Biswas et al. 2015). However, since GMI

radiance has not yet been assimilated in the opera-

tional GFS, assimilation of GMI radiance over the

parent domain is desired in order to assess its full data

impact. To achieve this, we initialize the parent do-

main using the GFS 6-h forecast, employing the same

procedure as in the inner 6- and 2-km inner nests to

achieve data assimilation over the parent domain. In

each of these experiments, the parent domain assim-

ilates the same types of data as are assimilated in the

ghost domain 2.

Several sets of data assimilation experiments (with

and without GMI data) are performed to evaluate the

impact of assimilating GMI radiance on hurricane sim-

ulations (see the list of experiments in Table 1) using the

GSI-based ensemble-3DVar (hereafter GSI for sim-

plicity) data assimilation system. Each set of experi-

ments consists of a control experiment (CTRL), which

assimilates all data (except for the tail Doppler radar

data because the data were absent in many cases in this

study) that are currently assimilated in operational

HWRF, including conventional data, GPS radio occul-

tation (RO) data, satellite-derived winds, and satel-

lite radiance observations from both microwave [e.g.,

Advanced Microwave Sounding Unit-A (AMSU-A),

Advanced Technology Microwave Sounder (ATMS),

Microwave Humidity Sounder (MHS), etc.] and in-

frared [e.g., Atmospheric Infrared Sounder (AIRS),

Infrared Atmospheric Sounding Interferometer (IASI),

etc.] sensors, and the GMI data assimilation experiment

(GMI), which is the same as CTRL but with GMI clear-

sky radiance assimilated in the parent domain and ghost

domain 2. For all experiments, theHWRFModel is spun

up by regular 6-hourly analysis–forecast cycles with all

the data assimilated into the CTRL experiments (as

described above) till 6 h before the data assimilation

experiments with GMI. Specifically, for Hurricane

Joaquin, themature phase of its life cycle is emphasized

for the experiments in this study. The spinup period is

from 0000 UTC 29 September 2015 to 0000 UTC

1 October 2015. Then, the data assimilation experi-

ments are performed in 6-hourly analysis–forecast cy-

cles from 0600 UTC 1 October to 1800 UTC 2 October

2015 with GMI data, with the configurations of CTRL1

andGMI1 in Table 1. For HurricaneMatthew, both the

genesis and mature phases are included. For its genesis

phase, the spinup period is from 1200 UTC 26 September

(when Matthew was still a tropical disturbance) to

1200 UTC 27 September 2016, and the data assimilation

experiments (CTRL2 andGMI 2 in Table 1) are performed

in 6-hourly analysis–forecast cycles from 1800 UTC

27 September to 0000 UTC 29 September 2016. For its

mature phase, the HWRF Model is spun up from

1800 UTC 30 September 2016 to 1800 UTC 2 October

2016, and the data assimilation experiments (CTRL3

and GMI3 in Table 1) are performed from 0000 UTC

3 October to 1200 UTC 4 October 2016. The 120-h

forecasts are performed at each analysis time after the

data assimilation.

3. GMI data quality control and bias correction

a. Quality control (QC)

The QC for GMI clear-sky radiance in the GSI data

assimilation system uses two parameters associated with

cloud liquid water (CLW) and cloud ice, and three pa-

rameters associated with surface emissivity (following

Garrett et al. 2010).

First, over the sea surface, a column CLW is com-

puted using measurements fromGMI channels 1–7, 12,

and 13:

CLW5 a
0,clw

1 �
i51–7,
12,13

c
i
T
b,i
1 ĉ

1
log(T

b,3
2T

b,4
)

1 ĉ
2
log(T

b,6
2T

b,7
), (2)

where ci(i5 1–7, 12, 13) and ĉ1 and ĉ2 are prescribed

regression coefficients, and Tb,i(i5 1–7, 12, 13) is the

GMI brightness temperature at channel i. Another col-

umn cloud ice [e.g., graupel water path (GWP)] pa-

rameter is computed in a similar fashion:

GWP5 a
0,gwp

1 �
i51–7,
12,13

g
i
T
b,i
1 ĝ[3002 log(T

b,10
)]. (3)

Table 2 summarizes the values of ci, ĉi, gi, and ĝ. Con-

stant thresholds of 0.05 are used for both CLW and

GWP to toss pixels that are considered to be contami-

nated by CLW emission and ice scattering.
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In addition, the GSI surface emissivity QC filters

pixels affected by errors in the modeling of surface

emissivity using channels that are less susceptible to

the emission and absorption of water vapor (e.g., 10.65,

18.87, and 36.5GHz, each of which contributes one

emissivity parameter). The emissivity parameters for

these channels are calculated from an emissivity re-

gression using all 13 GMI channel Tb values and the

model surface skin temperature. A pixel is considered to

be affected by surface emissivity error if any of these

TABLE 1. The list of experiment configurations.

Expt

Hurricane

case

Data assimilation

(DA) period DA domains and data

DA cycle in d01

with GMI overpass

DA cycle in d02

with GMI overpass

CTRL1 Joaquin (2015)

mature

0600 UTC 1

Oct–1800

UTC 2 Oct

d01: Conventional observations,

satellite observations

d02: Conventional observations,

satellite observations

d03: Conventional observations

GMI1 Joaquin (2015)

mature

0600 UTC 1

Oct–1800

UTC 2 Oct

d01: Conventional observations,

satellite observations, GMI

0600 UTC 1 Oct 2015 0600 UTC 1 Oct 2015

d02: Conventional observations,

satellite observations, GMI

1200 UTC 1 Oct 2015 0000 UTC 2 Oct 2015

d03: Conventional observations 1800 UTC 1 Oct 2015

0000 UTC 2 Oct 2015

0600 UTC 2 Oct 2015

0600 UTC 2 Oct 2015

1800 UTC 2 Oct 2015

1800 UTC 2 Oct 2015

CTRL2 Matthew (2016)

genesis

1800 UTC 27

Sep–0000

UTC 29 Sep

d01: Conventional observations,

satellite observations

d02: Conventional observations,

satellite observations

d03: Conventional observations

GMI2 Matthew (2016)

genesis

1800 UTC 27

Sep–0000

UTC 29 Sep

d01: Conventional observations,

satellite observations, GMI

1800 UTC 27 Sep 2016 1800 UTC 27 Sep 2016

d02: Conventional observations,

satellite observations, GMI

0600 UTC 28 Sep 2016 1200 UTC 28 Sep 2016

d03: Conventional observations 1200 UTC 28 Sep 2016 0000 UTC 29 Sep 2016

1800 UTC 28 Sep 2016

0000 UTC 29 Sep 2016

CTRL3 Matthew (2016)

mature

0000 UTC 3

Oct–1200

UTC 4 Oct

d01: Conventional observations,

satellite observations

d02: Conventional observations,

satellite observations

d03: Conventional observations

GMI3 Matthew (2016)

mature

0000 UTC 3

Oct–1200

UTC 4 Oct

d01: Conventional observations,

satellite observations, GMI

0000 UTC 3 Oct 2016 0000 UTC 3 Oct 2016

d02: Conventional observations,

satellite observations, GMI

0600 UTC 3 Oct 2016 0600 UTC 3 Oct 2016

d03: Conventional observations 1200 UTC 3 Oct 2016 1200 UTC 3 Oct 2016

1800 UTC 3 Oct 2016 1800 UTC 3 Oct 2016

0000 UTC 4 Oct 2016 1200 UTC 4 Oct 2016

0600 UTC 4 Oct 2016

1200 UTC 4 Oct 2016

Base Matthew (2016)

genesis

1800 UTC 27

Sep–0000

UTC 29 Sep

d01: Conventional observations,

no satellite observations

d02: Conventional observations,

no satellite observations

d03: Conventional observations

Base1GMI Matthew (2016)

genesis

1800 UTC 27

Sep–0000

UTC 29 Sep

d01: Conventional observations,

add GMI

1800 UTC 27 Sep 2016 1800 UTC 27 Sep 2016

d02: Conventional observations,

add GMI

0600 UTC 28 Sep 2016 1200 UTC 28 Sep 2016

d03: Conventional observations 1200 UTC 28 Sep 2016 0000 UTC 29 Sep 2016

1800 UTC 28 Sep 2016

0000 UTC 29 Sep 2016
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three parameters exceeds a corresponding prescribed

threshold. Figure 2 shows a sample of the spatial distri-

bution of data from GMI channel-5 brightness temper-

atures that pass and fail the QC in the GSI system.

b. Bias correction (BC)

All data assimilation systems are developed based

on the assumption of unbiased Gaussian observational

errors. However, for satellite radiance observations,

sources of bias can arise from instrument error, such as

calibration error and degradation of the instrument

over time, systematic modeling error embedded in

the radiative transfer model (including the implicit

assumptions of the absence of cloud liquid and cloud

ice), and variation of the scan angle that causes

changes in the field of view at different scan positions.

While random error can be handled by the data as-

similation system, systematic errors (biases) can ulti-

mately degrade the analysis, as the data assimilation

system implicitly assumes an unbiased observational

error (Dee 2004; Migliorini 2012). Therefore, sys-

tematic error has to be removed from the observations

before passing them to the data assimilation system.

Bias correction for satellite observations consists

of two main components: airmass-dependent bias

and scan angle–dependent bias. Since GSI, version

3.3, bias correction for these two components has

been performed in a single step in the enhanced ra-

diance bias correction framework. Specifically, the

airmass-dependent bias for each GMI channel j is

projected by a weighted linear sum of a static bias

term bj, airmass-dependent predictors {p
(1)
i,j }, and scan

angle {p
(2)
i,j }:

b
j
5 b

0,j
1 �

3

i51

b
i,j
p
(1)
i,j (x)1 �

4

l51

a
l,j
fi , (4)

where bi,j (i5 1, 2, 3) and al,j (l5 1, . . . , 4) are bias

correction coefficients for airmass components and scan

angle components, respectively; and f is the field of

view number (FOVN). The airmass-dependent pre-

dictor p
(1)
i,j (i5 1, 2, 3) is defined as follows:

FIG. 2. Spatial distribution of (a) GMI overpass over ghost d02 at 0000UTC 2Oct 2015, with data that passedQC

(colored withO2 F values) and failed QC (gray), and (b) GMI observations that failed QC shaded with different

colors to denote the type of failure (blue: CLW QC; green: GWP QC; red: emissivity QC). Ghost d02 is shown as

an inner domain inside a longitude–latitude box. The hurricane center is indicated by the black cross at the

domain center.

TABLE 2. Prescribed regression coefficients to calculate CLW

and GWP for GMI brightness temperature included in GSI, ver-

sion 3.3 (after Garrett et al. 2010).

CLW GWP

a0,clw 20.611 27 a0,gwp 23541.463 29

c1 0.003 78 g1 0.003 93

c2 20.001 49 g2 0.000 88

c3 0.034 38 g3 0.000 63

c4 0.016 70 g4 20.006 83

c5 0.002 28 g5 0.003 33

c6 0.038 84 g6 20.003 82

c7 0.023 45 g7 0.004 52

c12 20.000 36 g12 0.047 65

c13 0.000 44 g13 20.004 91

ĉ1 1.955 59 ĝ 11.988 97

ĉ2 2.151 43
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FIG. 3. Two-dimensional histogram showing the dependence of O 2 F sample (collected from 26 Sep to 9 Oct

2015) on (left) CLW (kgm22), (middle) Tlap (K), and (right) the field of view number (FOVN; rad) for channels 3,

5, 6, 8, and 10. The y axis denotesO2 F value and the x axis represents predictor. The flat distribution around 0 is

unbiased.
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p
(1)
1,j 5 [cos(f)]2 3 CLW, (5)

p
(1)
2,j 5 (Gt

j 2Gt
j )

2
, (6)

p
(1)
3,j 5Gt

j 2Gt
j , (7)

where Gt
j is the lapse rate of transmittance for channel j

and varies over pixels, and Gt
j is the mean lapse rate of

temperature. The Gt
j in (6) and (7) is computed by the

following expression:

Gt
j 52 �

K

k51

(t
j,k11

2 t
j,k
)(T

k11
2T

k21
) , (8)

where tj,k is the transmittance from the kth model level

to the top of atmosphere for the jth channel and is

computed during CRTM integration, while Tk is the

temperature at the kth model level.

c. BC coefficients for GMI clear-sky radiances

In operational HWRF, bias correction coefficients for

each sensor are prescribed in the input GFS files. How-

ever, since GMI radiance data had not yet been assimi-

lated in the operational GFS in 2015 and 2016, BC

coefficients for GMI radiance observations were not

available in these input data. Therefore, in this study, the

BC coefficients for GMI radiances are derived in-

dependently using a combination of a static BC method

and the adaptive BC capability within GSI. Specifically, a

rough estimation of the BC coefficients is computed

using a linear regression on a representative set of ob-

servations minus forecasts (O2 F) derived from 14 days

of GMI overpasses in the region of interest. This rough

estimation of coefficients is then treated as an initial guess

for a variational BC inside of GSI through an iteration

process over a short period of data assimilation cycles

FIG. 4. Variation of BC coefficients with the iteration number obtained from experiment GMI1 for (a) constant

offset, (b) CLW predictor (CLW), (c) transmittance lapse rate (Tlap), and (d) Scan angle.
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FIG. 5.O2 F statistics against CLW predictor (left) before and (middle) after BC. (right) Histogram ofO2 F values.

Data sample consists of assimilated GMI observations from four analysis–forecast cycles of the mature phase of Joaquin

that havemajorGMI overpasses in the parent domain (0600UTC 1Oct, 1800UTC 1Oct, 0200UTC 2Oct, and 0600UTC

2 Oct 2015).
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(e.g., following Zhu et al. 2014) to obtain the temporal

variation of the coefficients.

First, for each hurricane case, a set of 14-day overpass

GMI data over the corresponding basin (North Atlantic

Ocean for Hurricanes Joaquin and Matthew) is col-

lected, which spans from the genesis phase to the decay

phase of the hurricane. Meanwhile, for each GMI

overpass, the departure between the simulated and ob-

served Tb (e.g., observed2 first guess, orO2 F) and the

predictors [e.g., CLW, temperature lapse rate (Tlap)

and its square, four orders of scan angles, mean bias

or constant offsets] for each pixel are calculated. A

multilinear regression is then used to estimate the

dependence ofO2 F values on a set of predictors and

the BC coefficients are computed. Figure 3 shows

sample results of the dependence of O 2 F on pre-

dictors based on statistics during the life of Hurricane

Joaquin (between 26 September and 9 October 2015)

for channels 3, 5, 6, 8, and 10. There is apparent de-

pendence between O 2 F and the CLW and temper-

ature lapse rate (Tlap), respectively, with biases

present, but there is no dependence between O 2 F

and the scan angles.

As mentioned, the current version of GSI uses var-

iational bias correction to adaptively update the BC

coefficients by including the coefficients as analysis

variables in the data assimilation step. This advance-

ment allows the data assimilation system to adjust the

BC coefficients automatically at each analysis step and

capture the temporal evolution of the coefficients ef-

fectively (Zhu et al. 2014). Using this capability of the

GSI system, a GSI iteration experiment is performed

to finetune the BC coefficients for different phases of

the hurricane case studies. Details of the iteration

FIG. 6. Comparison of tracks betweenNHCbest track (black curve) with 120-hHWRF forecasts (colored lines) initialized by each of the

analyses generated in the 7 analysis–forecast cycles (as listed in the legend) for experiments without and with GMI data assimilation for

(a) CTRL1 and (b) GMI1. (c) The 120-h mean track error averaged over the all 7 forecasts in (a) and (b), for CTRL1 (red) and GMI1

(blue).
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FIG. 7. Aggregatedminimum SLP andmaximum surface wind forecasts of (a),(c) CTRL1 and (b),(d) GMI1 (colored curves) compared

with NHC best track data (black curve; 0600 UTC 1Oct to 1800UTC 7Oct 2015) for the 120-h forecast started at the analysis time in all 7

analysis–forecast cycles (as listed in the legend). (e),(f) The mean forecast errors of minimum sea level pressure and maximum surface

wind averaged over the forecasts started at the analysis time in all 6 analysis–forecast cycles (6-hourly from 0600 UTC 1 Oct to 1800 UTC

2 Oct 2015) for CTRL1 (red) and GMI1 (blue). In (e) and (f), the colored numbers on the left and right show the averaged errors over all

7 forecasts in first 60-h and 120-h HWRF integration, respectively.
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procedure are as follows: first, for a given hurricane

(e.g., Joaquin), at least four 6-hourly data assimilation

analysis–forecast cycles (each of which has at least one

GMI overpass near the hurricane region) are per-

formed. Then, using the BC coefficients obtained from

linear regression as an initial guess, GSI analysis is

performed sequentially at each of these 6-hourly

analysis–forecast cycles. At each GSI analysis, the BC

coefficients are adjusted accordingly and then passed to

the next analysis–forecast cycle. After the coefficients

go through all data assimilation within the analysis

window, one iteration is completed and the whole

process is repeated again for the next iteration until the

coefficients stabilize. Figure 4 shows the variation of

various predictors during the iteration procedure. It

shows that the BC coefficients are stable after only

several iterations for most variables. In fact, if the lin-

ear regression step is eliminated and the variational

bias correction alone is used, the bias coefficients will

converge (or become stable) slowly and can take more

than 50 iterations to reach similar results. Zhu et al.

(2014) have noted that poor initial guesses of BC co-

efficients may lead the QC to reject/accept data of

good/poor quality.

Figure 5 summarizes the O 2 F statistics before and

after bias correction. The data sample consists of as-

similated GMI observations from the first four analysis–

forecast cycles in the GMI data assimilation experiment

during the mature phase of Joaquin in HWRF d01. The

comparison shows that before BC, O 2 F dependence

onCLW follows the same trend shown in the left column

of Fig. 3. After BC,O2 F values are distributed almost

uniformly over the entire range of CLW values. This

indicates that the BC coefficients obtained from the two-

step bias correction approach are able to remove bias

arising from CLW emission. In addition, the right col-

umn of Fig. 5 shows a histogram of the first-guess de-

parture before and after BC, revealing that after BC,

O 2 F distribution become less biased with a normal

distribution around zero.

FIG. 8. Assimilated brightness temperature observations of all microwave sensors during the mature phase of

Joaquin at (a) 0600 UTC 1 Oct and (b) 0600 UTC 2 Oct 2015, and during analysis cycles of the mature phase of

Matthew at (c) 1800 UTC 27 Sep and (d) 1200 UTC 28 Sep 2016. GMI overpasses are highlighted in purple.
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4. Impact of GMI radiance data on numerical
simulations of hurricanes

a. Track and intensity

1) HURRICANE JOAQUIN

The track forecast of Hurricane Joaquin in 2015 was

challenging for the forecast community. As Joaquin

reached category 3 strength and became a major hurri-

cane on 1 October 2015, it made a hairpin turn and

moved northeast under the influence of a deepening

mid- to upper-level trough near the southeasternUnited

States. As mentioned in the section 2c, the data assimi-

lation experiments are performed from 0600 UTC

1 October to 1800 UTC 2 October (see Table 1) in

6-hourly analysis–forecast cycles. A 120-h forecast is

made at each analysis time of these 6-h analysis–forecast

cycles after the data assimilation.

Figure 6 illustrates a comparison of the aggregated

track forecasts between CTRL1 (without assimilation of

GMI data) and GMI1 (with assimilation of GMI data)

during the cycling periods from 0600 UTC 1 October

to 1800 UTC 2 October 2015. From Fig. 6a, it is clear

that the CTRL1 experiment shows systematic biases

of forecast tracks toward the northwest side of the best

track during the hairpin turn of Joaquin. These track

errors are greatly reduced for experiments initi-

ated after 0600 UTC 2 October, as the hairpin turn is

close to completion. In contrast, GMI1 (Fig. 6b) also

shows a great reduction in the magnitude of the track

biases, owing to the assimilation of the GMI data. The

largest difference in track forecasts between CTRL1

and GMI1 is found for the forecasts initiated at

0000 UTC 2 October. During the first 12-h forecasts,

tracks from both the CTRL1 and GMI1 experiments

show good agreement with the best track. However,

the tracks in CTRL1 show a more northward trend

soon after, while those in GMI1 attain a more realistic

eastward propagation. Track errors of CTRL1 exceed

200 km after 30 h of forecast, while GMI1 retains a

track error of less than 140 km throughout the 72-h

forecast period.

FIG. 9. Comparison of tracks between NHC best track (black curve) with 120-h HWRF forecasts (colored lines) initialized by each of the

analyses generated in the 6 analysis–forecast cycles (as listed in the legend) for experiments without and with GM2 data assimilation for

(a) CTRL2 and (b) GMI2. (c) The 120-hmean track error averaged over the all 6 forecasts in (a) and (b), for CTRL2 (red) andGMI2 (blue).
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FIG. 10. Aggregated minimum SLP and maximum surface wind forecasts of (a),(c) CTRL2 and (b),(d) GMI2 (colored curves) com-

pared with NHC best track data (black curve; 1800 UTC 27 Sep–0500 UTCOct 2016) for the 120-h forecast started at the analysis time in

all 6 analysis–forecast cycles (as listed in the legend). (c),(d) The mean forecast errors of minimum sea level pressure and maximum

surface wind averaged over the forecasts started at the analysis time in all 6 analysis–forecast cycles (6-hourly from 1800 UTC 27 Sep to

0000 UTC 29 Sep 2016) for CTRL2 (red) and GMI2 (blue). In (e) and (f), the colored numbers on the left and right show the averaged

errors over all 6 forecasts in first 60-h and 120-h HWRF integration, respectively.
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The 120-h mean track error for CTRL1 and GMI1 (as

shown in Figs. 6a and 6b), averaged over the forecasts

started from each analysis of all 7 analysis–forecast cy-

cles against the NHC best track data, is shown in Fig. 6c.

A consistent improvement in the track forecast is seen

after the assimilation of GMI data, with roughly 20% and

more than 12% reductions in track error during the first

72-h and over the entire 120-h forecasts, respectively.

Figure 7 shows a comparison of theminimum SLP and

maximum surface wind forecasts between CTRL1 and

GMI1 from all seven different forecast lead times. The

figure indicated an overall positive or neutral impact of

GMI data assimilation on the intensity forecast for

Hurricane Joaquin over 120-h forecasts, while positive

impacts on the intensity forecasts at first 60 h are

evident.

Figures 8a and 8b show the spatial distribution of as-

similated brightness temperature from all microwave

sensors (GMI data are highlighted in purple) over

HWRF d01 at two different analysis times in GMI1.

Except for GMI data, a set of microwave sounders, in-

cluding the AMSU-A on board NOAA-15, NOAA-19,

and MetOp-A satellites, the MHS on board NOAA-18,

NOAA-19, and MetOp-A satellites, and the ATMS is

assimilated. In each of the times shown in Figs. 8a and

8b, GMI contains an overpass in the near-hurricane

environment, where overpasses of other similar sensors

are not present. This shows that the addition of GMI

data to the entire pool of microwave sensors can provide

more complete coverage of microwave satellite obser-

vations in the near-hurricane environment.

A comparison of GMI1 with CTRL1 shows that the

impacts of assimilating GMI clear-sky radiance on

the intensity forecast of Joaquin are less significant. The

60-h mean error in the maximum wind and minimum

central sea level pressure (SLP) forecasts shows either

neutral or marginal impacts (with less than 5% error

reduction) from the assimilation of GMI data for most

of the forecast time (figure not shown).

2) HURRICANE MATTHEW

Compared to Joaquin, Hurricane Matthew exhibited

less uncertainty in its track throughout its life cycle. Both

the genesis and mature phases of Matthew are used to

further examine the impact of assimilating GMI data on

track and intensity forecasts (see the experimental de-

sign in Table 1). Figures 9 and 10 show comparisons of

the track, minimum SLP, maximum wind forecasts be-

tween CTRL2 and GMI2 from different forecast lead

times at the genesis, rapid intensification, and part of

intensity change phases of Matthew from 1800 UTC

27 September to 0500 UTC October 2016. Figure 9

indicated a small, neutral impact of assimilation of GMI

data on the track forecast of Hurricane Matthew.

However, Fig. 10 reveals an obvious positive impact of

GMI data assimilation on the intensity forecast with

improvements in the first 60-h forecasts (up to 0000UTC

FIG. 11. 60-h mean forecast error of (a) track, (b) minimum sea

level pressure, and (c) maximum surface wind averaged over fore-

casts started from the analysis time of all 7 analysis–forecast cycles for

themature phase ofMatthew (6-hourly from 0000UTC 3October to

1200 UTC 4 October 2016) for CTRL3 (red) and GMI3 (blue).
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1 October 2016). Specifically, it is apparent that

CTRL2 (without GMI data assimilation) consis-

tently undergoes rapid intensification too early,

generally about 12–18 h ahead of the best track data

(Fig. 10a). In contrast, GMI2 shows a correction in

the forecast of minimum SLP (Fig. 10b) during the

rapid intensification period. However, after 0000 UTC

1 October 2016, the end of Matthew’s rapid in-

tensification, the GMI data assimilation results in

mixed forecast impacts with slightly degraded intensity

forecast in some cases, reflecting the complicated dy-

namic and physical processes involved in the intensity

changes. Nevertheless, the influences of the initial

conditions on forecasts should not be as significant as

the physical processes after 60-h forecasts. Figure 10c

displays the mean 120-h minimum SLP and maximum

wind forecast errors. Overall, the assimilation of GMI

data results in consistent positive impacts on both

minimum SLP and maximum surface wind (MSW) for

the first 60-h forecast while some mixed impacts occur

FIG. 12. Comparison of geopotential height (m) and streamline from (a),(d),(g) ERA-Interim reanalysis and (b),(c),(e),(f),(h),(i) HWRF

forecasts. The HWRF 42-h forecasts valid at 1800 UTC 3 Oct 2016 at (b),(c) 550mb and (e),(f) 750mb, compared with the corre-

sponding ERA-Interim reanalysis. (h),(i) The 60-h HWRF forecasts valid at 1200 UTC 4 Oct 2016 at 800mb, compared with the

corresponding ERA-Interim reanalysis. The CTRL1 andGMI1 experiments (initiated at 0000UTC 2Oct) are shown in themiddle and

right panels, respectively.
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afterward, although the overall averaged impacts dur-

ing the 120-h forecast period are positive.

The mature phase of Matthew exhibits small uncer-

tainty in both track and intensity forecasts. Figure 11

shows the 60-h mean track and intensity forecast, which

covers the mature phase of Matthew but not the in-

tensity change period afterward for experiments CTRL3

and GMI3. Overall, the assimilation of GMI clear-sky

radiance has a neutral impact for the mature phase of

Matthew.

b. Impacts on hurricane large-scale environmental
conditions

Further diagnoses are conducted to demonstrate the

impact of GMI data assimilation on the hurricane en-

vironment. Figure 12 shows geopotential height and

streamline fields at 550 hPa and 750hPa at the 42-h

forecasts for Joaquin from the CTRL1 and GMI1

experiments (valid at 1800 UTC 3 October 2015), re-

spectively, compared with the corresponding ECMWF-

interim reanalysis at the valid time. While the overall

environmental features are similar between the CTRL1

and GMI1 experiments, noticeable differences are seen

on the northwest side of the simulated vortices. Spe-

cifically, throughout the layer from 500 to 800mb

(1mb 5 1 hPa), the flow around the vortex in GMI1 is

more isolated from the deepening mid- to upper-level

trough (on the northwest side of the hurricane) than

that of CTRL, similar to a separation seen in the

ECMWF reanalysis field.

c. Impacts on forecasts of hurricane structure: Against
dropsonde sounding during TCI

To further verify the impact of GMI data assimilation

on hurricane forecasts, independent observations—

namely, soundings obtained from a recent field program,

the Tropical Cyclone Intensity (TCI) Experiment—are

used. TCI is a collaborative field experiment sponsored

by the Office of Naval Research (ONR), with the ob-

jective of improving forecasts of tropical cyclone in-

tensity and structure changes (Doyle et al. 2017).

During TCI, the NASAWB-57, which carries the High

Definition Sounding System (HDSS) Dropsondes, is

employed to sample the hurricane inner-core structure

and its surrounding environment. The following veri-

fication utilizes dropsonde data collected during the

mature phase of Joaquin from the HDSS.

Because many TCI soundings are taken close to the

hurricane center (within 50km of the center), choosing

model profiles that have the same geophysical location

as the sounding could result in significant overestimation

of errors because of errors in the track forecast in each

experiment. To account for this effect, model profiles in

each experiment are selected such that their positions

relative to the center of the simulated vortices are

the same as the position of the soundings relative to the

best-track hurricane center. This guarantees that the

focus of comparison is on the overall inner-core struc-

ture. Figure 13 shows the distribution of TCI soundings

around 1800 UTC 2 October 2015 and the correspond-

ing model verification grids (from 12-h forecasts initi-

ated at 0600 UTC 2 October 2015). While the vortex

center in GMI1 has a geophysical location similar to that

of the best track data, CTRL1 has a track error of

roughly 40 km. Apparently, comparing soundings with

model profiles at the same geophysical locations (in-

dicated by black circles) is relatively unfair to CTRL1.

Instead, model profiles that have the same relative po-

sitions with respect to the simulated vortices are more

reasonable.

Figure 14 reveals the results of comparing the vertical

profiles of root-mean-square error (RMSE) and bias in

temperature and specific humidity against TCI drop-

sonde soundings. In the comparison, only soundings

that are within 150km of the hurricane center are in-

cluded. The sample contains forecasts initiated at 0600

and 1200 UTC 2 October 2015, verified against TCI

soundings launched around 1800 UTC 2 October and

1800 UTC 3 October, giving a total sample size of 156.

From the RMSE in Figs. 14a and 14b, the assimilation of

GMI clear-sky radiance reduces error in temperature

throughout the entire troposphere, while its impact on

specific humidity lies mostly in the midtroposphere

FIG. 13. Locations and spatial distribution of model profiles and

TCI sounding profiles (launched around 1800 UTC 2 Oct 2015,

with distance less than 110 km from the hurricane center). Hurri-

cane centers are shown by dotted circles.
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FIG. 14. Vertical profiles of (a),(b) RMSE and (c),(d)mean bias (solid colored

lines) and standard deviation (shading) of specific humidity and temperature

forecasts and RMSEs of (e) radial and (f) tangential wind forecasts (initiated at

0600 and 1200 UTC 2Oct 2015) for CTRL1 (red) and GMI1 (blue). Each of the
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(400–700mb; Fig. 14b). Figures 14c and 14d show the

mean bias and the standard deviation of temperature

and specific humidity at different pressure levels. For

temperature, both experiments (CTRL1 and GMI1)

produce warm biases in the lower troposphere (below

500hPa) and cold bias in the upper troposphere

(Fig. 14c). However, these biases in GMI1 are notice-

ably smaller than that in CTRL1. For specific humidity,

GMI data also result in reduction of the biases.

The impact of GMI on the wind field is also examined.

Figures 14e–h show the comparison of RMSE for radial

wind and tangential wind between CTRL1 and GMI1

verified against TCI soundings, respectively. Within a

150-km radius of the hurricane center, the wind magni-

tudes from both CTRL1 and GMI1 are greater than the

dropsonde data at the lower levels (below 700-hPa pres-

sure levels), while GMI data assimilation improves the

radial wind fields and results in a neutral impact on tan-

gential winds in the middle and upper levels (Figs. 14e,f).

The comparison is also revealed on the near-hurricane

environment within a radius of between 150 and 600km

from the center, giving a sample size of 114. From

Figs. 14g and 14h, it is found that assimilation of the GMI

data results in noticeable improvements in the radial wind

fields in both the lower troposphere (between 600 and

800mb) and upper troposphere (about 300mb), as shown

in Fig. 14g. In terms of tangential velocity (Fig. 14h),

the impact of GMI is rather neutral, with some posi-

tive impact on the midlevel troposphere (between 350

and 450mb).

d. Impact on temperature and moisture fields during
the genesis of Matthew

Assimilation of GMI clear-sky radiance is found to

provide noticeable improvements in the intensity fore-

cast of the genesis phase of Matthew. During this phase,

it is found that widespread cold air dominates themiddle

to lower troposphere in the east sector of the storm, as

shown by the GFS analysis between 650 and 850mb.

Figure 15 compares HWRF 30-h forecasts valid at

0800 UTC 29 September 2016 against the corresponding

GFS analysis. It shows that both CTRL2 and GMI2

have a similar east–west temperature gradient across the

storm in the midtroposphere. However, in CTRL2 the

cold temperature on the east side of the storm is no-

ticeably weaker compared to the GFS analysis. In con-

trast, GMI2 has more dominant cold air accumulated in

the east sector of the storm, resembling the cold air

configuration seen in the GFS analysis, even though the

magnitude and spread are still underestimated.

 
forecasts is verified against TCI soundings launched within a 150-km radius of

the hurricane center around 1800 UTC 2 Oct and 1800 UTC 3 Oct 2015, giving

a sample size of 156. As in (e) and (f), the RMSE of (g) radial and (h) tangential

wind forecasts are verified against TCI soundings launched between 150 and

600 km from hurricane centers, giving a sample size of 114.

FIG. 15. Comparison of 30-h temperature (K) forecasts at 650mb, valid at 1800 UTC 29 Sep 2016 for (b) CTRL2 and (c) GMI2 against

(a) GFS analysis at the corresponding time. Hurricane centers are indicated by the crossed circles. Red circles indicate the locations of the

large pool of cold air to the east of storm.
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Figure 16 shows the vertical profiles of RMSE for

temperature and specific humidity within a 600-km ra-

dius of the observed storm center, averaged over 30-h

forecasts from each analysis of all analysis–forecast cy-

cles of the genesis of Matthew (CTRL2 and GMI2). For

the errors in the temperature field, assimilation of GMI

data has a positive impact throughout almost the entire

troposphere, especially below the 600-hPa pressure

level. For specific humidity, obvious error reduction can

be seen around the 500-hPa pressure level.

In fact, during the genesis phase of Matthew, GMI

overpasses are overlapped with other microwave sensors

that have similar humidity profiling channels, including

AMSU-A, MHS, and ATMS, as shown in Figs. 8c and 8d.

These sensors have humidity sensor channels similar to

those of GMI near 23.8 and 183GHz. To further in-

vestigate the impact of GMI on HWRF forecasts in this

type of case, another set of experiments is conducted,

called Base and Base1GMI in Table 1. The Base is

similar to CTRL2, expect no satellite observations are

assimilated. GMI clear-sky radiance is assimilated in

Base1GMI, along with other data are assimilated into

the Base, including conventional observations, GPS-RO

data, and satellite-retrieved wind. In addition, consider-

ing the early results of CTRL2 and GMI2 (Fig. 10), the

evaluation of forecast impacts is conducted for the first

60-h forecasts to emphasize Matthew’s genesis and rapid

intensification phases only, and also to obtain the clear

FIG. 16. RMSE for 30-h forecasts of (a) temperature and (b) specific humidity, verified against GFS analysis.

Statistics are averaged over forecasts started from the analysis time of all 6 analysis–forecast cycles (6-hourly from

1800 UTC 27 Sep to 0000 UTC 29 Sep 2016 during the genesis phase of Matthew) within a 600-km radius of the

hurricane centers (blue: CTRL2 and Base; red: GMI2 and Base1GMI).
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influences of data assimilation (e.g., initial conditions) that

are commonly best shown in the short-range forecasts.

Figure 17 shows a comparison of 500–850-mb aver-

aged RMSE of specific humidity forecasts between

CTRL2, GMI2, Base, and Base1GMI. Figures 17a and

17b show that CTRL2 and GMI2 have a rather similar

spatial distribution of specific humidity RMSE. Clearly,

assimilating GMI clear-sky radiance provides only a

small improvement in the moisture field, which is con-

sistent with the result shown in Fig. 17b. In Fig. 17c,

when no radiance observation is assimilated, the

Base experiment shows the largest error in the moisture

field among all 4 experiments, especially on both the

northeast and northwest sides of the storm. When GMI

data are added, Base1GMI shows a noticeable re-

duction in RMSE in specific humidity compared to the

Base experiment, as shown in Fig. 17d, which reveals the

sole impact of GMI data assimilation on the specific

humidity when other similar satellite sensors are not

present. In addition, a comparison of Fig. 17d with

Figs. 17a and 17b shows that the overall spatial distri-

bution of RMSE in Base1GMI is similar to that in

CTRL2 and GMI2, indicating that the constraints im-

posed by GMI data assimilation on specific humidity are

consistent with other sensors, hence resulting in a similar

improvement.

FIG. 17. Averaged 500–850-mb RMSE of specific humidity at 30-h forecast (valid at 0000 UTC 29 Oct 2016).

(a) CTRL2, (b) GMI2, (c) Base, and (d) Base1GMI. RMSE is calculated based on forecasts verified against GFS

analyses at the valid time.
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Figure 18 shows the mean errors for minimum SLP,

MSW, and track forecasts in Base and Base1GMI, aver-

aged over the forecasts from the analyses of all the analysis–

forecast cycles. It is found that without the presence of

other sensors, the assimilation of GMI clear-sky radiance

alone is also able to provide similar positive impacts on

HWRF forecasts during Matthew’s genesis phase.

5. Summary and conclusions

This study examines the impact of assimilating GMI

clear-sky radiance on HWRF hurricane forecasts using

the GSI-based hybrid ensemble–3DVar data assimilation

system. Prior to assimilating the radiance, bias correc-

tions are conducted using a two-step approach. First, a

static bias correction is used to derive a rough estimate of

the bias correction coefficient using regression on a rep-

resentative sample of radiance departure. The estimated

bias correction coefficients are then treated as a first guess

to go through a series of iterative procedures using the

variational bias correction capability in GSI to capture

the small-time variation of the coefficients.

Hurricane Joaquin in 2015 and Matthew in 2016 are

used as case studies to evaluate the impact of assimi-

lating GPM GMI clear-sky radiance on hurricane anal-

ysis and forecasts. For the mature phase of Joaquin,

assimilating GMI radiance results in significant im-

provement in the track forecast, especially during its

hairpin turn. Comparing against ERA-Interim data, we

found a significant improvement in the forecast of the

geopotential height field in the near-hurricane envi-

ronment, leading to a more realistic interaction between

the simulated hurricane vortex and the nearby mid- to

upper-level trough. The overall impact on the intensity

forecast of the mature phase of Joaquin is significant in

short range (60 h) but relatively modest over 120-h

forecasts. This is mostly due to the fact that clear-sky

radiance observations occur away from the inner-core

region of the hurricane.

For the genesis phase of Matthew, forecast results show

that assimilating GMI radiance improves the intensity

forecast, especially during the first 48–60-h forecast. Close

examination of the forecast result usingGFS analysis shows

that assimilating GMI clear-sky radiance improves the

forecast of mid- to lower-level cold air aggregated on the

northeast side of the storm, which causes Matthew’s in-

tensification to slowdown.UsingGFSanalysis as reference,

the overall RMSE statistics show a clear improvement in

temperature throughout the entire troposphere and in

low- to midlevel specific humidity in the near-hurricane

environment (radius less than 500km), even when other

microwave sounders are present (e.g., AMSU-A, ATMS,

MHS, etc.).

An additional experiment is performed for themature

phases of Matthew, during which Matthew exhibits rel-

atively small uncertainty in both track and intensity. The

overall result of this phase shows that while the impact

FIG. 18. The 60-h mean error of (a) track, (b) minimum sea level

pressure, and (c) maximum surface wind, averaged over forecasts

started from each analysis time of all 6 analysis–forecast cycles of

the genesis phase of Matthew (6-hourly from 1800 UTC 27 Sep to

0000 UTC 29 Sep 2016), for Base (red) and Base1GMI (blue).
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of GMI on both track and intensity is rather small, no

negative impact is seen.

The experiments performed in this study indicate that

there is a great potential to assimilate GMI satellite radi-

ances into the regional hurricane prediction models (e.g.,

HWRF) to improve the operational hurricane prediction.

However, numerical experiments from this paper did not

fully follow the operational HWRF analysis and forecast

procedures (e.g., no tail Doppler radar data assimilation,

no vortex intensity correction, with the emphasis on short-

range forecasts only, etc.). Meanwhile, the operational

HWRF Model has been updated at the time when this

paper was written. Therefore, future work will further ex-

amine the impacts ofGMIdata assimilation on operational

HWRF hurricane analyses and forecasts and achieve the

statistical significance. The investigation will also extend to

assimilatingGMIall-sky radiance, especially in thehurricane

inner-core regions. Moreover, although the two-step bias

correctionmethods in this study shed light on bias correction

in the regional model, additional efforts are still required to

address the issue adequately in the hurricane environment.
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